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In this paper we present calculations describing nonlinear surface waves at the interface between an isotropic
nonlinear self-focusing medium and a linear biaxial dielectric. These solutions exhibit self-walk-off in the
Poynting vector and elliptical polarization, both of which vary as a function of the distance from the interface.
If the dielectric tensor element in the direction perpendicular to the interface has a value that is between the
tensor elements in the other two principal directions, then there exists a stop band in the power dispersion
curves. This phenomenon is not present when the linear crystal is uniaxial.@S1063-651X~96!12910-X#

PACS number~s!: 42.65.Wi

There is a rich literature concerning nonlinear surface
waves~NSW!, beginning with the original investigation of
such waves existing in a structure comprised of a homoge-
neous linear dielectric bounded by a homogeneous nonlinear
self-focusing dielectric@1–4#. These investigations were mo-
tivated by experimental evidence suggesting the existence of
such a bound state excited by light obliquely incident on the
dielectric boundary. Following the initial development vari-
ous cases have been examined, including multiple dielectric
boundaries@5,6#, TE- and TM-type waves@7–12#, nonlocal
@13# and self-defocusing nonlinearities@14,15#. For a good
summary of this field, see, e.g.,@16#. However, a unifying
simplification inherent in all of these investigations has been
the assumption that the media exhibit an isotropic dielectric
tensor. In such a case the resulting NSW can be divided into
TE and TM modes. In this paper, field profiles and disper-
sion relations are computed for the fundamental and higher-
order NSW that exist in anisotropic dielectric media in which
the full vector nature of the nonlinear susceptibility must be
considered. The resulting NSW are generally elliptically po-
larized and exhibit a self-walk-off phenomenon.

The anisotropic dielectric NSW problem is an important
one, motivated by the fact that strain is present to some de-
gree in all coherently grown crystal systems. The strain,
whether tensile or compressive, induces an anisotropy in the
dielectric tensor through a modification of the crystal band
structure near the boundary. Because all nonlinear integrated
optical waveguides involve dielectric boundaries, and many
proposed waveguide schemes use coherently grown crystals
~e.g., nonlinear waveguides fabricated from the GaAs/
AlGaAs semiconductor system! it is very important to under-
stand the impact that this underlying anisotropy has on the
characteristics of the NSW.

I. PROBLEM FORMULATION

The geometry for the NSW problem is shown in Fig. 1. A
semi-infinite linear anisotropic crystal occupies the half

space described byy>0, and a semi-infinite nonlinear iso-
tropic crystal exists in the regiony<0. The crystal principal
axes are denoted by the directionsx̂, ŷ, and ẑ so that the
anisotropic crystal is characterized by the dielectric tensor

ec5F ex
0
0

0
ey
0

0
0
ez
G . ~1.1!

For y<0, the nonlinear polarization is described by the fol-
lowing expression:

P5FAuEu2E1
B

2
~E•E!E* G , ~1.2!

whereA56x1122
~3! andB56x1221

~3! are the nonlinear susceptibil-
ity parameters@17#. In this paper, we will consider the case
whereA5B, corresponding to a nonresonant bound elec-

FIG. 1. Anisotropic nonlinear surface-wave problem geometry.
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tronic nonlinearity, although the technique described in this
paper may be applied for arbitraryA andB.

It is useful to use a coordinate system defined so that one
of the axes coincides with the phase propagation direction.
The surface-wave directions are denoted with italicized di-
rection variables where the propagation directionx̂ makes an
anglea with the principal directionx̂. In this rotated frame
of the surface wave, the dielectric tensor must be written as

esw5F exx
0

ezx

0
ey
0

ezx
0

ezz
G , ~1.3!

where the matrix elements are defined as follows:

ezz5eycos
2~a!1exsin

2~a!, ~1.4!

exx5eysin
2~a!1excos

2~a!, ~1.5!

ezx5
~ex2ey!

2
sin~2a!. ~1.6!

Beginning with Maxwell’s equations a wave equation can
be derived for the NSW field in each of the two dielectrics.
The wave equation in the nonlinear medium may be written
in normalized form as

“3~“3E!5E1uEu2E1g~E•E!E* , ~1.7!

whereg is the fractionB/A. The corresponding wave equa-
tion in the linear anisotropic medium is written in normalized
form as

“3~“3E!5eswE, ~1.8!

All dielectric constants have been normalized by the linear
dielectric constant in the nonlinear material~i.e., e in the
normalized equations may be less than 1! so that the wave
equations are uncluttered by physical constants.

In order to solve the anisotropic NSW problem, the fol-
lowing ansa¨tz is made:

E5E~y!exp~ inz!. ~1.9!

This form of the solution is assumed in both mediums. Cut-
off conditions are found by insisting on exponential extinc-
tion of the surface modes far from the interface. These sur-
face modes are used to construct complete solutions by
imposing matching boundary conditions at the interface.

II. NONLINEAR ISOTROPIC SURFACE MODES

In the nonlinear medium, the mode profiles may be writ-
ten in terms of its three components as

E5F UiV
W

G . ~2.1!

Because the NSW must remain bound to the interface, the
real part of theŷ component of the Poynting vector must be
zero. This constraint forces theŷ component ofE to be in
quadrature with the other two field components. As a result
the nonlinear Helmholtz wave equation reduces to a set of
real equations of motion for the field componentsU, V, and
W:

]

]y
U5nQ, ~2.2!

]

]y
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W1W1~11g!~W21U2!W1~12g!V2W

11
1

n2
~2b21~12g!~W21U2!13~12g!V3!

J , ~2.3!
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1

n
@2b2V1~12g!~W21U2!V1~11g!V3#, ~2.4!

]

]y
Q52

1

n
@2b2U1~11g!~W21U2!U1~12g!V2U#, ~2.5!

whereb5An221 is the linear extinction coefficient in the
nonlinear medium far from the interface. In order for the
nonlinear solutions to decay to zerob2 must be greater than
zero. This cut-off condition must be considered in addition to
linear anisotropic surface-mode cut-off conditions. The set of
first-order Eqs.~2.4!–~2.5! can then be integrated using stan-

dard numerical techniques. The initial condition required for
the integration consists of the field amplitude at a distance
far from the interface on the nonlinear side. This field am-
plitude must be sufficiently small that the nonlinearity is not
manifest. In this limit, the initial condition can be character-
ized by two parameters:f, shown in Fig. 1, is the polariza-
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tion angle of the field with respect to theẑ-x̂ plane, andd
parameterizes the field amplitude. Using these two param-
eters, the initial condition is writtenW5d cos~f!exp(by),
U5d sin~f!exp(by), V5(n/b)W andQ5(b/n)U.

III. BOUNDARY CONDITIONS

Now that a technique for computing the fields on the non-
linear sides of the dielectric interface has been established, I
present the method used for matching conditions at the inter-
face. In an anisotropic crystal the field can be written as the
sum of two surface modes:

E5@A1E~1 !eny
1y1A2E~2 !eny

2y#einz. ~3.1!

These surface modes will be discussed in later sections for
both uniaxial and biaxial crystals. In either case, the two
modes generally have different elliptical polarizations and
each mode has its own distinct real evanescent extinction
coefficient given byn y

1 andn y
2. A linear combination of the

two, specified by the coefficientsA1 andA2 , will be neces-
sary to match boundary conditions at the interface. These
two mode amplitudes can be related to thex̂ and ẑ compo-
nents of the nonlinear field at the interface through the con-
tinuity of the tangential electric field:

FA1~y!

A2~y!G5
1

Ez~1 !Ex~2 !2Ex~1 !Ez~2 ! F Ex~2 !

2Ex~1 !

2Ez~2 !

Ez~1 ! GFW~y!

U~y! G .
~3.2!

This expression determines the linear-field-mode combi-
nation necessary to match the nonlinear field. However, be-
cause only the tangential field is considered, it is not suffi-
cient to show that the nonlinear field components match the
linear field. In an effort to further simplify the boundary
conditions, the following observations are made. Thex̂ com-
ponent of the magnetic field will be matched if theŷ com-
ponent of the electric displacement~Dy! is matched. Theŷ
component of the magnetic field is matched as a result of the
assumption that the phase velocity for the entire wave is the
same, requiring excitations on both sides of the boundary to
propagate as exp(inz). Thus, the problem of matching
boundary conditions between the biaxial linear medium and
the nonlinear medium reduces to matching theŷ component
of the electric displacement~Dy! and theẑ component of the
magnetic field~Bz!. The mismatch in these two components
can be expressed as

DDy~y!5 iV@11~W21U2!~12g!1V2~11g!#

2ey~A1Ey~1 !1A2Ey~2 !!, ~3.3!

DBz~y!5nQ2~A1ny
1Ex~1 !1A2ny

2Ex~2 !! ~3.4!

The solution technique becomes one of searching the ini-
tial condition parameter space for the nonlinear surface mode
equations~2.4!–~2.5! to find field distributions for which the
mismatches inDy andBz are simultaneously zero at some
locationy. The nonlinear Helmholtz equations are integrated
numerically using a seventh-order Adams-Bashforth-
Moulton scheme@18#, and the initial condition amplitude as
well as the grid spacing are varied to assure correct results.

For each integration the functionsDDy(y) andDBz(y) can
be computed so that by varying the assumed mode indexn
and angle parameterf the zeros of these two functions can
be made to cross. An interface located at they position of
this crossing point then satisfies boundary conditions for the
numerically calculated nonlinear surface mode and a linear
anisotropic field mode computed from Eqs.~3.2! and ~3.1!.
This process of selecting parameters so that the zero cross-
ings ofDDy(y) andDBz(y) coincide can be performed either
visually or automated with an algorithm that follows the gra-
dient off with respect to the distance between zeros of both
functions.

IV. LINEAR ANISOTROPIC SURFACE MODES

The field in the anisotropic medium is assumed to have
the form of a linear surface wave

E5Eeinz1nyy, ~4.1!

wheren is the mode index of the wave andny is an evanes-
cent extinction coefficient. Using this assumed form of the
field each component of the anisotropic Helmholtz equation
~1.8! can be written

Ezezx5Ex~2exxn
22ny

2!, ~4.2!

Ez~ inny!5Ey~2n21ey!, ~4.3!

Ez~ezz1ny
2!1Exezx5Ey~ inny!. ~4.4!

By combining Eqs.~4.2! and~4.3! an expression for the an-
isotropic surface mode can be derived,

E5F ezx~n2ey!
2 inny~n

22ny
22exx!

~n22ey!~n
22ny

22exx!
G iEy
nny~n

22ny
22exx!

~4.5!

However, using Eqs.~4.4! and~4.2! a second expression for
the surface mode can be found,

E5F i nnyezx
~n22ny

22exx!~ezz1ny
2!1ezx

2

1

i
nny~n

22ny
22exx!

~n22ny
22exx!~ezz1ny

2!1ezx
2

G Ey . ~4.6!

Because Eqs.~4.5! and ~4.6! must be equivalent, the ex-
tinction coefficient and the mode index can be related
through the equality ofEz :

n22ey
nny

5
nny~n

22ny
22exx!

~n22ny
22exx!~ny

21ezz!1ezx
2 . ~4.7!

This extinction mode equation can be rearranged into a qua-
dratic polynomial,

ny
41Fez1ex2n2S ey1ezz

ey
D Gny21S n22ey

ey
D @n2ezz2ezex#

50. ~4.8!
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The two resulting extinction coefficients are then given by
the following expressions:

ny
225 1

2 ~2b2AD !,
~4.9!

ny
125 1

2 ~2b1AD !,

where several parameters are defined as follows:

D5b224c, ~4.10!

b5Fez1ex2n2S ey1ezz
ey

D G , ~4.11!

c5S n22ey
ey

D @n2ezz2ezex#. ~4.12!

V. BIAXIAL NONLINEAR SURFACE WAVES

All the general features of uniaxial nonlinear surface
waves discussed in@19,20#, such as self-walk-off, elliptical po-
larization, and angle-tuned cut-off still arise. In addition to
these effects, interesting features resulting from the behavior
of the discriminantD will be discussed.

In order to have a surface wave, the extinction coefficients
are required to be real and less than zero. Though it might
seem that a surface wave could have complex extinction co-
efficients, this is not the case. It can be shown that complex
extinction coefficients lead to a real component of the Poyn-
ting vector perpendicular to the interface. Since power can-
not flow away from the interface in a stable surface wave, the
extinction coefficients cannot have a complex component.

The requirement that the squared extinction constants are
both real and greater than zero lead to three conditions. The
first condition,b,0, is a cut-off corresponding to the occur-
rence where both modes become plane waves. The second
conditionc.0 is a cut-off corresponding to the case where
only one mode becomes a plane wave. The third condition
D.0 describes a forbidden band of parameters where the
extinction coefficients become complex. This stop band does
not occur in the analogous uniaxial surface wave problem.

The cut-off conditions thatb,0 and c.0 define three
critical curves:

h1
25ey , ~5.1!

h2
25

ezex
ezz

, ~5.2!

h3
25

ez1ex
ey1ezz

ey . ~5.3!

These curves describe a general cut-off condition
n2.max@h1

2,h2
2,h3

2#, which can depend on the launch anglea
throughezz in h2 andh3. Though it may seem that the cut-off
requirements could also be satisfied ifh3

2,n2,min@h1
2,h2

2#, a
consideration of each ensuing special case shows that these
inequalities do not have solutions.

Analysis of the stop band is aided by writingD as a
quadratic inn2,

D5ãn41b̃n21 c̃, ~5.4!

where the coefficients of the quadratic may be expressed as
follows:

ã5Fezz2ey
ey

G2, ~5.5!

b̃5
2

ey
@~2ey2ez2ex!ezz12ezex2~ez1ex!ey#, ~5.6!

c̃5~ez2ex!
2. ~5.7!

When this quadratic has real rootsj6
2 , thenD,0 between

them. Hence, the band ofn2 values between the roots are
forbidden. IfD has only complex roots then no such band
will occur. The roots ofD can be written as follows:

j6
2 5

2b̃6AD̃
2ã

, ~5.8!

D̃5S 2eyD
2

~ez2ex!
2~ez2ey!~ey2ex!sin

2~2a!. ~5.9!

The form ofD̃ shows that the roots ofD can only be real if
ey is between the values ofex andez .

A. Case 1: ex<ey<ez

There are three cases corresponding to the ordering of the
principal dielectric tensor constants. In the first case the di-
electric constant perpendicular to the surface is between the
principal dielectric constants in the other two directions.
Without loss of generality, the ordering can then be assumed
to be as follows: ex,ey,ez . Figure 2 illustrates the angle
dependence of the cut-off relations and stop band in the fol-
lowing discussion for a specific example whereex50.88,
ey51.1, andez51.43.

If a is 0 orp/2 the surface wave is propagating along a
principal axis and bothj6 converge to the same value. In

FIG. 2. Biaxial surface-wave cut-off and stop band for the case
whereex50.88, ey51.1, andez51.43. The grey region shows an
allowed band of values forn2 as a function of the direction of
propagation~a!. Surface waves in this band are not allowed to
propagate between the anglesa13 anda23.
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particular these values are given by the following expres-
sions:

j6
2 ~0!5

ey~ez2ex!

~ez2ey!
, ~5.10!

j6
2 ~p/2!5

ey~ex2ez!

~ex2ey!
. ~5.11!

The upper curvej1
2 becomes infinite whenã50, which oc-

curs at an anglea5u such that

sin2~u!5
ez2ey
ez2ex

. ~5.12!

At this angle the forbidden band extends fromj2
2 to `.

With this ordering of the dielectric constants, the correct
cut-off relations are found by determining the angles at
which the critical curves coincide. Given this information
and the maximum critical curve at the anglesa50 and
a5p/2 the cut-off relations in three resulting ranges ofa are
determined. The following expressions define the anglesajk
where the curvesh j

2 andh k
2 cross:

sin2~a13!5
ex2ey
ex2ez

, ~5.13!

sin2~a12!5
ez~ex2ey!

ey~ex2ez!
, ~5.14!

FIG. 3. Biaxial nonlinear surface-wave profiles and power dispersion curves forex50.88, ey51.1, ez51.43, anda51.4; ~a! @001a#
mode forn251.68, ~b! @012b# mode forn251.5, ~c! power dispersion curves for the@001a# and @012b# modes.
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sin2~a23!5
ez
2~ex2ey!

@ey~ez1ex!2ezex#~ex2ez!
. ~5.15!

Since sin2~a! is an increasing function in the considered
range of angles, it can be shown thata13,a12,a23. By com-
paring each of the curves ata50 anda5p/2 it can be con-
cluded that at angles between 0 anda13 the cut-off relation is
n2.h1

25ey . This cut-off condition has no angle dependence,
just as in isotropic surface modes. Between the anglesa5a23
anda5p/2 the maximal critical curve ish2

2 so that the cut-
off is given as follows:

n2.h2
25

ezex
ezcos

2~a!1exsin
2~a!

. ~5.16!

This expression is exactly the cut-off that occurs for uniaxial
surface waves whenez5ey .

Between the anglesa13 anda23 the maximal critical curve
is h3

2. However, recalling that the curven25h3
2 corresponds

to the case whenb50 and the other two critical curves rep-
resent the case wherec50, it is apparent that the intersection
of these two curves must also intersect one of the stop band
edgesj6 . Since bothj6

2 ~0! andj6
2 ~p/2! can be shown to be

greater thanh1
2 or h2

2 at the angles 0 andp/2, it follows that
the lower edge of the stop band~described by the curve
n25j2

2 ! dips below cut-off betweena5a13 and a5a23.
Hence, solutions can exist only ifn2.j1

2 in this angle range.
In Figs. 3~a! and 3~b!, the electric field and Poynting vec-

tor profiles for the@001a# and @012b# modes are illustrated.
These modes exhibit self-walk-off andy-dependent elliptical

FIG. 4. Biaxial nonlinear surface-wave profiles and power dispersion curves forey50.88,ex51.1,ez51.43: ~a! @112# mode fora51.4
andn251.5, ~b! @112# mode fora50.5 andn251.2, ~c! power dispersion curves for the@112# mode the anglesa50.5 anda51.4.
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polarization@20#. In Fig. 3~c!, power dispersion curves and a
stop band are shown for these two modes.

B. Case 2: ey<ex<ez

When the dielectric tensors are ordered so thatey,ex,ez
the curveh2

2 curve is never any smaller thanex . It follows
thath1

2 cannot be the maximal cut-off curve. By showing that
h2
2 andh3

2 cannot coincide for any value ofa and then con-
sidering their relative values ata50 anda5p/2 it can be
shown thath2

2.h3
2. It follows that the cut-off relation with

this dielectric constant ordering is alwaysn2.h2
2, which

may also be written as follows:

n2.
ezex

ez1~ex2ez!sin
2~a!

. ~5.17!

This cut-off relation also occurs in a uniaxial surface wave
whenez5ey .

Figures 4~a! and 4~b! illustrate the electric field and Poyn-
ting vector profiles of the@112# mode ata50.5 withn251.2
and the same mode fora51.4 withn251.5. The correspond-
ing power dispersion curves are shown in Fig. 4~c!. It can be
seen from this illustration how by increasing the angle-tuned
cut-off the power threshold can also be increased.

FIG. 5. Biaxial nonlinear surface-wave profiles and power dispersion curves forey51.43,ex50.88,ez51.1: ~a! @001# mode forn251.5,
~b! @112b# mode forn251.5, ~c! power dispersion curves for the@112b# and @001# mode and the anglesa50.5 anda51.4.
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C. Case 3: ey>ez>ex

If instead the dielectric constants are ordered so thatey is
greater than the dielectric constants in the other directions,
then the curven25h1

2 will always be greater than the other
two critical cut-off curves. In this case the cut-off is given
simply byn2.ey . As in an isotropic medium this cut-off has
no angle dependence. The Poynting vector and electric-field
profile are illustrated for the@001# and@112b# modes in Figs.
5~a! and 5~b!, respectively. Power dispersions for these two
modes at both anglesa50.5 anda51.4 are illustrated in
5~c!. This demonstrates the angle independence of the cut-off
for this configuration. Though the cut-off for these solutions
is angle independent, the surface waves still have a small
dependence on the propagation direction. This angle depen-
dence of the modes in this configuration is most apparent at
the power threshold where a difference in the power disper-
sion curves at the two angles can be detected.

VI. COMPARISON TO UNIAXIAL
NONLINEAR SURFACE WAVES

In Ref. @20# we presented the case corresponding to a
uniaxial crystal. In this section we show how those solutions
exist as a limiting case of the solutions presented in the cur-
rent paper.

There are two distinct possible crystal orientations for a
uniaxial crystal with one of its principal axes perpendicular
to the interface. In the first case, ifez5ex the problem loses
all dependence on the direction of propagation because any
components of the electric field parallel to the interface in-
duce the same relative polarization. Therefore, this case is
essentially the same as the isotropic surface-wave problem.
Consequently, we concentrate on the crystal orientation
whereez5ey .

The discriminantD in Eq. ~4.10! can also be expressed as
follows:

D5Fn2S ezz2ey
ey

D1~ez2ex!G214n2
~ey2ez!~ezz2ex!

ey
.

~6.1!

For the uniaxial case, the square root of the discriminate is
given by

n2S ezz2ey
ey

D1~ez2ex! ~6.2!

so that the expressions for the extinction coefficients in Eqs.
~4.9! can be reduced to the much simpler uniaxial surface-
mode extinction coefficients. The solution that depends on
the propagation angle throughezz is recognized as the ex-
traordinary mode extinction numbern y

2, while the solution
that is independent of the propagation angle is recognized as
the ordinary extinction numbern y

(o):

ny
~e!25n2

ezz
ey

2ex, ~6.3!

ny
~o!25n22ez. ~6.4!

The corresponding mode polarizationsE(o) andE(e) can be
found from Eq.~4.5! usingny5n y

(o) for the ordinary mode
and usingny5n y

(e) for the extraordinary mode.
For both modes, the squared uniaxial extinction coeffi-

cient,n y
2, is a linear function of the squared effective mode-

index n2. This is illustrated in Fig. 6~a!. Both linear modes
are required to have real extinction coefficients andn2 is
required to be greater than 1. Because the zero of the extraor-
dinary curve is larger than either 1 or the zero of the ordinary
curve, the extraordinary mode determines the cut-off for the
uniaxial solutions for the parameters used in Fig. 6~a!. The

ny
(e)2 andny

(o)2 lines generally cross and can be understood as

FIG. 6. Plots of the squared extinction coefficients as a function
of the squared effective mode index:~a! For the uniaxial crystal
parametersex51.43, ey50.88, anda51.178, ~b! for the biaxial
crystal parametersex50.88,ey51.1, ez51.43, anda50.2.
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a limiting case of hyperbola solutions to Eq.~4.8!. For biax-
ial crystals the hyperbola curves consist of two disconnected
parts, giving rise to phenomena that differ from the uniaxial
case. In particular, for the crystal orientation given by the
dielectric element orderingex,ey,ez , the major axis direc-
tion for the hyperbola in then2-n g

2 plane explains the stop-
gap phenomena discussed earlier. This is illustrated in Fig.
6~b!. For crystal orientations where the dielectric constant in
the y direction is smaller or greater than both of the other
principal tensor elements, the direction of the hyperbola ma-
jor axis is such that no stop band arises.

VII. SUMMARY

In this paper we have described analysis leading to calcu-
lations of biaxial NSW Electric-field profiles and Poynting
vectors for the lowest-order modes were presented, and
power-dispersion curves were illustrated. These surface
waves exhibit the self-walk-off phenomena, where the Poyn-
ting vector direction is mostly in the direction of phase
propagation, but has a small transverse component parallel to

the interface. This transverse component varies with the dis-
tance from the interface. Each of the solutions were ellipti-
cally polarized and the polarization varied as a function of
the transverse coordinate normal to the interface plane. Ex-
pressions for the angle-tuned cutoff of anisotropic NSW’s
have also been presented. The solution regimes for biaxial
surface waves were classified and discussed in detail. The
solutions arising from a biaxial crystal differs from those of
uniaxial crystals presented in@20,19# primarily because bi-
axial crystals can lead to a stop-gap in the surface-wave-
mode index.

One of the phenomena in the biaxial case that sets it apart
from the uniaxial case is the surface-wave stop band. This is
a consequence of extinction coefficients becoming complex
and differs from typical cut-offs where extinction coeffi-
cients become purely imaginary. This can also be understood
as a deformation of curves describing the uniaxial decay co-
efficients for nearly degenerate polarization modes so that
the decay coefficients are described by equations for hyper-
bolas rather than lines.
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